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We introduce a cost function D which is meant to penalize con-
ABSTRACT, gestion (large flows) through each link. In particular, we assume

We consider the behavior of distributed asynchronous routing al- the separable form
gorithms for optimizing the flows in a virtual circuit data network,= -

with respect to a given convex cost function. The algorithms op-
erate with minimal synchronization of computations and informa- (,j)
tion exchange between different processors and consist of gradient We assume that each Dij is twice continuously differentiable and
projection iterations which compute a target set of flows for each its second derivative is bounded away of zero. (In particular,
path. Then, the processors try to make the actual flows equal to D-i is strictly convex.) Since the Fi's are functions of the x,'s,
the target flows, by appropriately assigning paths to incoming, we may rewrite the cost function in terms of the zp variables to
new virtual circuits. We concentrate on the 'many small users" obtain the form D(z) = i Di(z), where 2 is the vector of
case, in which there is (on the average) a very 'large number of all Zps. Clearly, each Dij inherits the convexity property of the
virtual circuits, each one requiring a small communication rate. Dij's.
This note is a followup to our earlier paper [TsBe] and addresses We are interested in routing schemes which minimize
the limiting behavior when the frequency of iteration becomes in- limsupt. Z[D(z(t))]. Let D' be the minimum value of D(-)
finite relative to the frequency of information exchange between subject to the constraints that xP > 0, pp = r,, VW,
nodes.

.......... ----... - rVp E Ps,. As e -* 0, t --* oo, the random variable r,,(t) converges
I. MODEL DESCRIPTION. to its steady state mean r, in the mean square and this fact

may be exploited to show that thlere exist routing policies under
We are given a network described by a directed graph C = which lim4 G- limsup,_ E[D(z(t))] < D'. On the other hand,

(V, E). (V is the set of nodes, E is the set of directed links.) For lmsup,, E[D(z(t))] > D for every routing scheme, this be-
each pair w = (i,j) of distinct nodes i, j, (also called an origin- ing a consequence of Jensen's inequality. Thereore, an algorithm
destination, or OD pair), let P, be a given set of paths from i to for the deterministic multicommodity network flow problem (for
j containing no loops. (These are the candidate paths to which

virtual circuits--will beasiwhich D' is the optimal value) may be used as a guide for ob-virtual circuits-will be assigned for transmitting messages-from - * taining an asymptotically (as e --, 0) optimal routing scheme.
i to j.) For each OD pair w and for any time t, there will be
a total of NW,(t) active virtual circuits linking node i to node j. The particular scheme we propose is based on the gradient
These virtual circuits are assigned to paths, Np(t) being assigned projection algorithm for the above defined multicommodity fow
to path p. (Thus, NW(t) = E e Np(t).) New virtual circuits problem, which consists of the following iteration (for each wto):
for OD pair w are generated according to a Poisson process, at Let z. = (2p; P E Pw) be the vector of all path fows for a given
a rate A,/e, where e is a small positive parameter. Newly gen- OD pair w. Let j be a path in P, with the smallest value of
erated virtual circuits are assigned to a path p E P,, and remain (8D/8z-)(x.). We then let
assigned to that path during the entire lifetime of the virtual cir- aD aD
cuit, which is an (independent) exponential random variable with 2- * max{0 ,, - ftQ(<-(zx,)- (xz))}, p pA (l.a)
rate /,. Each virtual circuit for OD pair w is assumed to require
communication rate e from each link in the path to which it is z i (r - 7 zp) (1.b)
assigned. (Thus, by letting e be very small, we are at the 'many pOP pep.
small users" situation.) situation.) Here ;,p is a positive scaling constant, typically obtained from an

We are primarily interested in the case where e is very small approximation of the matrix of second derivatives of D), and a
and will therefore consider the asymptotic performance of routing is a small positive stepsize.
schemes, as e -a 0. For this reason, we prefer to work with the
schemvariables r,(t) ands 0. For this reasoned by , w e prefer to work with the In a realistic data network as decsribed above, iteration (1)

Notice that the mean of r,(t) (at steady state) is equal to r, cannot be implemented exactly if z is to stand for the vector ofa theefr t actual flows through the paths p E P,,,. Some of the reasons are
also define the refore independent of For anythat link to be equal to the the following: a) Due to the stochastic nature of the generation
sum of zp(t), over all paths p which use link (i, j). and extinction of virtual circuits, it is impossible to enforce a

desired number of them, for each p; b) The processor who is to
execute the iteration (1) for a certain OD pair to may not have
access to the exact current value of the derivative of D, evaluated
at the vector z of current path flows; c) The value of r,,, may

' Research supported by the National Science Foundation un- not be known exactly; in fact in realistic situations r,, varies
der grant ECS-8217668 and by a Presidential Young Investigator slowly with time and a good routing algorithm should be able to
Award. track such changes w'.hout causing flows to be far from optimal.



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
SEP 1986 2. REPORT TYPE 

3. DATES COVERED 
  00-09-1986 to 00-09-1986  

4. TITLE AND SUBTITLE 
Some Issues in Distributed Asynchronous Routing in Virtual Circuit Data
Networks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Massachusetts Institute of Technology,Laboratory for Information and
Decision Systems,77 Massachusetts Avenue,Cambridge,MA,02139-4307 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

18. NUMBER
OF PAGES 

3 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



In the next paragraph we describe how iteration (1) would be here was proposed in [Be], [BeGa2]. The asynchronous version

implemented in a realistic environment so as to overcome the of the gradient projection algorithm was analyzed in [TsBe], fol-

above mentioned difficulties. lowing more general studies of asynchronous descent algorithms

We assume that the processor in charge of the OD pair w [TsBeAt]. In all these references, the stochasticnature and short-

(PlR.,, for short) has available at each time t a target flow 2p(t) term variations of the input traffic are ignored. In [GaBel the
for each path p E 1P,. w (We denote by zw, (t) the vector with "many small users" assumption is introduced in a stochastic set-
components pa(t±) p E P,.) Thes( e d target flows are updated at ting and asymptotic optimality (as e - 0) is proved for a different
times t ~nW n = 1, P.2 .. We assume that for some scdalars A, class of routing algorithms, under the assumption of synchro-

nism. Finally [Ts] considered the simultaneous effects of asyn-

0 < 6 < t"+l - t <c b Vn, w. (2) chronism and the stochastic nature of input traffic (under the
many small users assumption) thus integrating previous models

Other than the above inequalities, we do not impose any restric- and approaches. The statements made in the next section are

tions on the sequence {tl}, thus assuming minimal synchroniza- variations of some of the results in [Ts].
tion of the computations of processors in charge of different OD

pairs. Suppose that at time tw, processor PR,,, has available es- IL DISCUSSION OF PERFORMANCE.

timates A" of partial derivatives cD/az,, for each p E P,, evalu-

ated at z(t'). This processor is typically the origin node for OD We discuss separately to cases:at This processor is typicallyt it he origin node forODA: Let us assume that the constant 6 of inequality (2) is nonzero.
pair to and we may reasonably assume that it has available ro (t)
pand w(t), an y t each time t. Then, this processor evaluates a vector Equivalently, there is a lower bound on the time between consec-
and z,o it), at each time t. Then, this processor evaluates a vector utive updates of the target flows, by each processor. Then, the
w of target flows using the formulas utive updates of the target flows, by each processor. Then, theit of target flows using the formulas

following result has been proved in somewhat different form in

- =5 arg min{Ap"}, (3.a) [Ts]: For any fixed positive value of 6 we may choose the stepsize
-y small enough and guarantee that, with either randomization

= max~{0o, (tZ) - '7p/(A'pn AX;~ )} P# pn, (i3.b) or metering, asymptotic optimality is obtained, in the sense that
lim,,_ limsup,,,_ E[D((t))l = D'.

:n = r,(tn) - S zp(te). (3.c) The proof of the above statement is quite long because of the
p*,, pEP, technicalities involved. However, the outline of the argument is

We assume that there exist constants m, M > 0 such that 0 < fairly simple. We first discard the possibility that Ir(t) - re, is
m < ,n < M. not negligible, this being a low probability event, for t large and

P e C~p" < M. h small. Then, we choose - to be, say, an order of magnitude
The estimates A' are assumed to be formed as follows: a pro- smaller than E. Then, the difference -n - p,(t') is very small

cessor observing link (i,j) computes, once in a while, the deriva- when compared with the length of the time interval [tn, tn+l.
tive of Dii, evaluated at F1i(t), where t is the current time and .transts this valuea to processor Thus, by the end of that time interval, zp(t) is equal to in plus
transrmits this value to processor PtR,........... Such derivatives (ob- some random deviation which is negligible as e -.- 0. Thus, af-
tained from each link (i,j)) are used by processor PR, to con- ter neglecting small random deviations, we may safely forget the

struct the estimate A' as the sum of D. over all links (i, j) on stochastic nature of the generation and extinction of virtual cir-
path p. This estimate would be exact if Fj(t) = Fj(t); however, cuits. We are therefore in the "setting of a deterministic asyn-
due to lack of synchronization between processors and communi- chronous gradient projection algorithm, whose convergence to an
cation delays this will not be the case in general. Nevertheless, if optimum of the cost function can be proved using the techniques
the flows in the network change slowly, this estimate will be fairly
accurate. (The above described scheme may be generalized by al- B: W e now consider the case where . This means that it
lowing the processor associated with link (i,j) to use a short term B: We now con e where = . This means that it
average of .Fij, rather the instantaneous value F 3i(t) at a single is possible that one processor performs an unbounded number
time t.) We assume that the processors associated with each link of iterations before other processors get a chance of performing a

evaluate the appropriate derivatives at least once every B time single iteration. For this case, it can be shown by means of an ex-

units, where B is some constant; furthermore, communication ample that if metering is employed and no matter how ' is chosen,
the algorithm may be non-convergent. The essence of such an ex-

delays are also assumed to be bounded by B. ample admits a simple explanation. For asynchronous gradient-
It remains to describe how processor PR,, assigns incoming .like algorithms to be convergent one generally needs that the

virtual circuits to paths, during the time interval ft. t,'+). Thevirtual circuits to paths, during the time interval The difference between true derivatives and estimates of derivatives,
objective is of course to make the actual flows zp (t) as close as used in the computation is of the order of the stepsize A. This
possible to the target flows p', but there are several alternatives; t of an iteration are not

P requires that the flows at the time t, of an iteration are not
we present two: - . . . *substantially different from the flows that were used in the eval-
(i) Randomization: Each incoming virtual circuit is assigned to
path p with probability g/r,, (t,) and independently from other) - F ) be of the order of ; when t-s is of the order

assignments. - of B (which is the bound on communication delays). However,
(ii) Metering: A new virtual circuit generated at time t is as-with metering, even if - z(t) is ofthe order of -, still there
signed to the path p for which the value of z - zp(t) is largest. Once

(Ties are broken by randomization.) z(t) reaches ti, (which takes 0(7) time), processor PR, may
Metering is generally recommended over randomization in pra- compute a new target and the process will be repeated. Thus,

ctice since it tends to bring about more quickly a close match some path flows zp.(t) may keep moving at (order of) unit speed
between target and actual path flows. On the other hand, the use for a time interval of O(i) magnitude, before new derivative in-
of metering has an interesting adverse effect on convergence when formation is obtained from other processors. It follows that the
the frequency of iteration is very large relative to the frequency previously mentioned requirements for convergence fail to hold,
of information exchange. This is the main point of this note, and derivative estimates have a 0(1) error and there is nothing to
is discussed in the next section. guarantee that the algorithm progresses in a descent direction.

Related Research: The above described scheme is moti- For randomization, the situation is different: if xz stands for
vated from an algorithm implemented in the CODEX network a generic true flow variable and z stands for a target variable,
(see [BeGall, Section 5.8). The application of nonlinear program- then the mean of zp satisfies a differential equation of the form
ming methods for distributed routing in data networks goes back dxp/dt = p(Zp - zp). Thus if initially z, -. = 0(-), which
to [Gal. The particular gradient projection method considered is always the case after an iteration, E[Zp(t)]. changes with 0(r)

----- ^ -- ~~~~~i awy tecseatr nitrton/7zvt].cage ih (t



speed. The variance of 2p(t) .goes to zero, as e -- 0 and it follows

that the derivative estimates are wrong only within a O(3 + e1/ 2 )
factor. By choosing c and j- small enough, the derivative esti-

mates are accurate enough to guarantee that iterations proceed
in a descent direction and the techniques of [TsBel may be used
to demonstrate convergence, in a suitable sense. We should men-
tion here that the technique employed in [TsBel requires that the
true fow at the time of an iteration is a convex combination of 
the true flow at the previous iteration and the target flow com-
puted at that previous iteration. This property is valid in this
case, modulo certain stochastic terms which vanish as e -- 0; this
is a straightforward consequence of the differential equation de-
scribing the evolution of the mean of x,, when randomization is
employed.

III. REFERENCES.

[Be]D.P. Bertsekas, 'A Class of Optimal Routing Algorithms for
Communication Networks", in Proceedings of the 5th Interna-
tional Conference on Computer Communications, Atlanta, GA,

October 1980, pp. 71-76.

[BeGallD.P. Bertsekas, R.G. Gallager, Data Networks, Prentice
Hall, Englewood Cliffs, N.J., 1986.

[BeGa2]D.P. Bertsekas, E.M. Gafni, "Projection Methods for Va-
riational Inequalities-with Application to the Traffic Assignment
Problem", Math. Progr. Studies, Vol. 17, 1982, pp. 139-159.

[Ga]R.G. Gallager, "A Minimum Delay Routing Algorithm Using
Distributed Computation", IEEE Transactions on Communica-
tions, Vol. COM-25, pp. 73-85, 1977.

[GaBelE.M. Gafni, D.P. Bertsekas, "Asymptotic Optimality of

Shortest Path Routing", to appear in the IEEE Transactions on

Information Theory.

[Ts]W.K. Tsai, 'Optimal Quasi-Static Routing for Virtual Cir-

cuit Networks Subjected to Stoohastic Inputs", Ph.D. Thesis, De-
partment of Electrical Engineering and Computer Science,

M.I.T.,1986.

[TsBe]J.N. Tsitsiklis, D.P. Bertsekas, "Distributed Asynchronous
Optimal Routing in Data Networks", IEEE Transactions on Au-

tomatic Control, Vol. AC-31, 4, April 1986, pp. 325-332.

[TsBeAt]J.N. Tsitsiklis, D.P. Bertsekas, M. Athans, 'Distributed
Asynchronous Deterministic and Stochastic Gradient Optimiza-
tion Algorithms", IEEE Transactions on Automatic Control, Vol.

AC-31, No. 9, 1986, pp. 803-812.


